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Abstract

A logic for reasoning about timing properties of concurrent programs is presented. The logic
is based on Hoare-style proof outlines and can handle maximal parallelism as well as certain
resource-constrained execution environments. The correctness proof for a mutual exclusion
protocol that uses execution timings in a subtle way illustrates the logic in action. A soundness
proof using structural operational semantics is outlined in the appendix.

Key words: concurrent program verification, timing properties, safety properties. real-time
programming, real-time actions, proof outlines.

1 Introduction

A safety property [9] of a program asserts that some proscribed "bad thing" does not occur during
execution. To prove that a program satisfies a safety property, one typically employs an invariant, a
characterization of current (and possibly past) program states that is not invalidited by execution.
If an invariant I holds in the initial state of the program and I =:ý Q is valid for some Q. then
--Q cannot occur during execution. Thus, to establish that a program satisfies the safety property
asserting that -,Q does not occur, it suffices to find such an invariant I.

Timing properties are safety properties where the "bad thing" involves the time and program
state at the instants that various specified control points in a program become active.1 Timing
properties can concern externally visible events, like inputs and outputs, as well as events and data
that are internal to a program, like the value of a variable or the time that a particular command
starts or finishes. For example, in process control applications, the elapsed time between a stimulus
and response may have to be bounded. This is a timing property where the "bad thing" is defined
in terms of the time that elapses after one control point becomes active until some other controi
point does. Timing properties concerning internal events are useful in reasoning about ordinary

"A preliminary version of this work appeared in Real-time: Theory and Practice, Proceedings of REX workshop,
.June 1991, Springer-Verlag Lecture Notes in Computer Science, volume 600,

tSupported in part by the Office of Naval Research under contract N00014-91-J-1219, the National Science Foun-
dation under Grant No. CCR-8701103, DARPA/NSF Grant No. CCR-9014363, and a grant from IBM Endicott
Programming Laboratory.

'Supported in part by NSF grant CCR-9003441.
1Supported in part by Defense Advanced Research Project- Agency (DoD) under NASA Ames grant number NA(;

2-593. and by grants from IBM and Siemens.
'Informally, the active control points at any instant are determined by the values of the program counter" at that

instant. See [15] for a more formal definition.
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concurrent programs that exploit knowledge of command execution times to coordinate proce's*0'.'
One such protocol-for mutual exclusion-is given in section 4.

Because timing properties are safety properties, the invariant-based method outlined above for
reasoning about safety properties can be used to reason about timing properties. This means that
a programming logic L to verify (ordinary) safety properties can form the basis for a logic L' to
verify timing properties. It suffices that in L' we are able to:

(a) specify in I and Q information about the times at which events of interest occur and

(b) establish that program execution does not invalidate such an 1.

Point (a) means that in defining L', the language of L might have to be extended so that it becomes
more expressive. Point (b) means that the inferencing apparatus of L might have to be refined
so that I can be proved an invariant for a program whose semantics includes information about
execution timings.

A logic for timing properties will, of course, depend on the execution model for programs. Like
[14], we consider two kinds of actions, ordinary actions, which can take any amount of time to
execute, and rvat-!i., actions. which have constant upper and lower bounds on their execution
time. Real-time actions allow the moa'lling of schedulers typically found when multiprogramming
is employed to implement processes.

This paper describes extensions to a logic of proof outlines [15] to enable verification of timing
properties for concurrent programs. The approach taken is the one just outlined: we start with
a logic for proving ordinary safety properties, augment the language according to (a) and refine
the inference rules according to (b). The presentation is organized as follows. In Section 2 we
describe Proof Outline Logic for non-real-time programs. Then, in Section 3, we describe additional
mechanisms needed to handle real time. In particular, we describe changes that must be made to
the Rule of Consequence and to the definition of non-interference. In Section 4, we illustrate the
use of our logic on a mutual exclusion protocol. Section 5 contains discussion of related topics.

An appendix summarizes a Plotkin-style [13] structural operational semantics and soundness
proof. The full details of the soundness proof will appear in [2]. Our proof builds a natural model.
similar to models built by other researchers in the theory of concurrent programming languages[6.
18, 1, 13]. This method of construction axgues for the reasonability of the logic and language as
well as proving its soundness, in much the same way that, for example. having the integers as a
model of an arithmetic system, or th,• Scott models for a A-calculus, give more plausibility than a
term model does.

2 Ordinary Proof Outline Logic

In order to reason about a program, we must be able to characterize sets of program states and
reason about them. First-order predicate logic is an obvious choice for this task. and we employ
the usual correspondence between the formulas of the lotmic and the programming language of
interest-each variable and expression of the programmin- language is made a term of the logic
and each Boolean expression of the programming language is made a predicate of the logic. It will
be coiovenient to assume that piedicates and terms are always defined. although the value of a term
may be unspecified in some states. For example, we will :assume that the term x/y has a value
whatever value y has, but that y x (x/y) need not equal .. ".lhen y is 0 because the value of x/! is
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unspecified in such states. 2

Predicates and function symbols for the programming language's data types provide a way to

express facts about program variables and expressions. Type declarations in the program induce
a'-ioms concerning the values that may be assumed by the variables they declare. Fur simplicity,
we take these as given.

The state of a program also includes information that tells what atomic actions might be

executed next. For representing this control information, we fix some predicate symbols, called

control predicates, and give axioms to ensure that, as execution proceeds, changes in the values of

the control predicates correspond to changes in program counters. (An alternative representation
would have been to define a "program counter" variable and a data type for the values it can
assume.)

2.1 Control Predicates

A program is a structured collection of labelled commands, although we omit labels in program
texts unless they are needed. Each command comprises one or more atomic actions. The defining
characteristic of an atomic action is that its execution is performed as a single indivisible state
transformation. The control points of a program are defined by its atomic actions. Each atomic
action has distint entry and exit control points. For example, the atomic action that implements
skip has a single entry control point and a single exit control point; the test for an if has one entry
control point and multiple exit control points, one for each alternative. Execution of an atomic

action ui can occur only when an entry control point for a is active. Among other things, execution
causes that active entry control point to become inactive aid an exit control point of a to become
active.

For each command or atomic action 5, we define the following control predicates:

at(S): an entry control point for S is active.

after(S): an exit control point from S is active.

in(S): at(S') holds for some atomic action comprising S.

The various commands of a programming language give rise to a set of axioms relating these
control predicates. These axioms formalize how the control predicates for a command or atomic
action S relate to the control predicates for constructs comprising S and constructs containing S,
based on the control flow defined by S. For our programming language these axioms are given in
Figure 1. We use GEvalif(S) there to denote the guard evaluation action for an if with label S and
GEvald0 (S) to denote the guard evaluation action for a do with label S. Equality of Boolean values
is logical equivalence. And, we write P EP 2@ ... @P,, to denote that exactly one of P1 through P,"

holds.
Our programming language is based on guarded commands [3]. Sequencing is written without

the traditional semicolon separator. 3 The guard evaluation of the if command atomically evaluates
all its tests at once and selects a branch for which the test is true; if none are true. then it will block
until some test is made true by another process. A do cnmmand atomically evaluates its tests,
selects a branch with a true test, and repeats; if none are true, then it exits. A cobegin command

2 More formally, we admit any interpretation in which a/b is interpreted as a divided by b when b $- 0, and ha&s
arbitrary values otherwise.

3We shall later see that this avoids a problem. A semicolon sepa: )r would have to occupy the same position a.&
an assertion in the standard textual representation of the proof out i.
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starts all of its component processes simultaneously, executing them concurrently. When they all

finish, tile cobegin finishes as well.

Construct Axioms
o atomic -(at(a) A after(a))

in(o) at(a)

at(S) at(S1 )
S S 1 S2  after(S) after(S 2 )

after(Si) at(S 2 )
in(S) in( Sl ) C in(S 2 )

S ifBI-S 1 ." at(S) at(GEvalf(fS))

Bi-,Si... after(S) (after(Sl),Dafter(S2)+...4-after(S,,))

SB,-,S, after(GEvalif(S)) (at(S1 )ea1(S 2)-... & at(S))))

fi in(S) in(GEvalif(S)) ( in(Sl)• ... in(S,)
S do B, -S," at(GEvaldo(S)) =(at(S)-after(Si)4Dafter(S2)j...@aftcrS•,i))

SBi--Si"". after(GEvaldo(S)) (at(SO)Dat(S2)e ... eat(S,•)C-after(S))

•Bn'--Sn i,•S) in(GEvaldo(S)) e in(Si) ... @ in(,

od at(S) = at(GEvaldo(S))

(after(GEvaldo(S)) V VZ 1 after(Si)) (after(Sj) e" .& after(S,) I= aftcr(GEval&,o(SYj1

S cobegin at(S) = (at(S1 ) A ... A at(S,))
S,"" S, after(S) = (after(S,) A... A after(S,))

coend

Figure 1: Control Predicate Axioms

2.2 Syntax and Meaning of Proof Outlines

A proof outline PO(S) for a program or atomit action S is a mapping from the control predicates
of S to assertions. Each assertion is a Predicate Logic formula in which

* the free variables are program variables (typeset in italics) or rigid variables, (typeset in

uppercase roman), and

* the predicate symbols are control predicates or the predicates of the programming language's

expression language.

Assertions in which all terms are constructed from program • ariables, rigid variables, and predicates

involving those variables are called primitive assertions.

If T is a subprogram of S and some PO(S) is fixed, then wye write pre(T) (resp. post(T)) for the

assertion(s) that PO(S) associates with at(T) (resp. af,! r! T)); these are called the precondition
and postcondition of T. For the proof outline in Figure 2, this correspondence is summarized in

Figure 3. In it, x is a program variable and X is a rigid variable. All assertions except pre(S) and

post(S) are primitive.
Proof outlines are generally represented as texts containing the program S and an assertion in

braces before and after every subprogram of S. For our pro.,ramming language, this will associate

.4



{x = X A at(S)}
S: if x > 0 -{x = X A X > 0}

S1 skip
{f = X A X > 0}

fJx < 0 - {x = X A X < 0}
S2 : x := -X

{-x = X A -x < 0)
fi

{x = IXI A after(S)}

Figure 2: Computing hxi

at least one assertion with every control predicate of a program. Multiple control predicates may
be mapped to the same assertion, as illustrated by the proof outline

{P} x := I {Q} y := 2 {R}. (1

Here, the entry control point for program x := I y := 2, and the entry control point for X := 1 map
to the same assertion, P. This is reasonable, because at("x := 1 y := 2") and at("x := 1") are
equivalent; if one control point is active, so will be the other.

Finally, for a proof outline PO(S), we write pre(PO(S)) to denote pre(S), post(PO(S)) to
denote post(S), and use a triple {P} PO(S) {Q} to specify the proof outline in which pre(S) is P.

post(S) is Q, and all other pre- and postconditions are the same as in PO(S).

Assertion Assertion Text

pre(S) x = X A at(S)
post(S) x = IXI A after(S)
pre(S) x = X A x > 0
post(SI) x = X A x > 0
pre(S 2 ) x = X A x < 0
post(S 2 ) -x = X A -x < 0

Figure 3: Assertions in a Proof Outline

Validity of Proof Outlines

The assertions in a proof outline are intended to document what can be expected to hold of
the program state as execution proceeds. The proof outline of Figure 2. for example. implies that
if execution is started at the beginning of S, with x = 23 (a state that satisfies pre(S 1 )), then if

S completes, post(S 1 ) will be satisfied by the resulting program state, as will post(S). And if
execution is started at the beginning of S with x = X. then whatever assertion is next reached--Iw
it pre(SI) because X > 0 or pre(S 2 ) because X < 0-that assertion will ho1t when reached, and
the next assertion will hold when it is reached, and so on.

With this in mind, we define validity of assertions and proof outlines. A valid assertion P

is one that holds in all program states, viz., states satisfying the datatype and control prediCate

5



{true}
a: cobegin

{x = 1}
b: skip

{. ..
I~II

c: skip

{.
coend

{...

Figure 4: Multiple Active Control Points (Partial proof outline)

axioms. A valid proof outline PO(S) will be one that describes a relationship among the program
variables and control predicates of S that is invariant and, therefore, not falsified by execution of
S. The invariant defined by a proof outline PO(S) is "if a control predicate cp is true. then so is
every assertion that PO(S) associates with cp" and is formalized as the proof outline intvariant for
PO(S):

IPo(s) : A ((at(T) => pre(T)) A (after(T) =:> post(T)))
T

where T ranges over the subprograms of S. For example, the proof outline invariant defined by
PO(S) of Figure 2 is:

at(S) =. (x = X A at(S)) A after(S) #- (x = JXJ A after(S))

A at(SI) =:,-(X X Ax > ) A after(S 1)='(x '=X A x>0)
A at(S 2) (x=XAz<O) A after(S 2) (-z=XA-x<_0)

Notice that proof outline validity is with respect to executions starting in any state, even a
state in the middle of the program. For example, the proof outline

{x = A y = 1}
S: a: x:=x+2

b: y:=y+2
{x= 2 A y = 3}

is not valid. This is because a state where at(b), x = 2, and y = 20 hold satisfies Ipo(s), but
starting execution in this state leads to one that does not satisfy 'po(s).

In order to make the inference rules of our logic as easy to use as possible, we have designed
them so that hypotheses concerning proof outlines do not delve too deeply into the structure of
those proof outlines. Allowing multiple control predicates to be true simultaneously - as we do
complicates the realization of this goal. Consider the concurrent program of Figure 4. There. at(a)
is true iff both at(b) and at(c) are true. Thus, in Figure 4,. ;f at(a) and Ipo(s) are bolh truo. lhen
x = 1 holds. However, pre(a) gives no warning of this requiiment: it is the trivial assertion "Iruo".

6



To avoid such anomalies, we insist that a proof outline PO(S) give its requirements in its
precondition. If at(S) and pre(PO(S)) hold, then 'po(s) must hold as well. We call such proof
outlines self-consistent, and require self-consistency of a valid proof outline along with invariance

of Ipo(s).
These invariance and self-consistency requirements for proof outline validity canl be formalized

in terms of Ii+-validity of Temporal Logic formulas, where 'H' contains all infinite state sequences
constructed by executing programs C[S] that contain a copy of S. The elements c0 of 7H are thos,

infinite sequences of states such that:

"* co is a state reached by executing some program C[S] zero or more steps from its initial state.
and

"* each state cri+: is a possible result of performing an atomic action of S from state a,. or. if
no action of S is enabled, repeating ao.

Note that 7W+ k P denotes that a Predicate Logic formula P is valid, because every program
state is the first state of some sequence in H+t. We now define PO(S) to be valid if and only if

Invariance: 7-R+ • Ppo(s) : OfIo(s)

Self-Consistency: H(+ k (at(S) A pre(S)) =p

From this definition we see that values of rigid variables are the same throughout any execution.
because free rigid variables in a temporal logic formula are implicitly universally quantified. This
means that rigid variables in proof outlines can be used relate the values of program variables from
one state to the next. For example, the proof outline of Figure 2 is valid and employs a rigid
variable X to record the initial value of x. Starting execution in a state where at(S 2 ) and x = -23
holds will satisfy IPO(s) =o 0 peo(s) even if X is 41 rather than -23 because then Ipo(s) is not
satisfied (causing Ipo(s) = Opo(s) to be trivially satisfied).

2.3 Axiornatization for a Proof Outline Logic

Proof Outline Logic is an extension of Predicate Logic. The language of Predicate Logic is extended
with proof outlines for all atomic actions, commands, and programs. The axioms and inference
rules of Predicate Logic are extended with axioms and inference rules that allow only valid proof
outlines to be proved theorems. In particular, there are some command-independent inference

rules as well as an axiom or inference rule for each type of command and atomic action. The
command-independent rules appear in Figure 5. With one minor exception, they will apply in our
real-time setting as well. We now turn to the axiomatization for a guarded-command concurrent
programming language.

The skip command is a single atomic action whose execution has no effect on any program
variable. Thus, it leaves primitive assertions-which only mention program variables and terms
that by their nature cannot change-unchanged.

skip Axiom: For a primitive assertion P: {P} skip {P} (7)

The familiar Hloare [7] assignment rule applies:



Rule of Consequence:

P',P, {P} PO(S){Q}, Q•Q' (Q)

{11'} Po(s) {Q'}

Rule of Equivalence:

PO(S), IPo(S) =po,(S), pre(PO'(S)) A at(S) ' pre(PO(S))
PO'(S)

Rigid Variable Rule: PO(S)Xp denotes a proof outline in which rigid variable X in every
assertion is replaced by Exp, an expression involving constants and rigid variables
(only).

{P} e(S) {QI}

Conjunction Rule: POA(S)®POB(S) denotes the proof outline that associates assertion
ACPABCp with each control predicate cp, where Xcp is the assertion that POx(S)
associates with control predicate ep.

POA(S), POB(S)
POA(S) @ POB(S) (5)

Disjunction Rule: POA(S)©POB(S) denotes the proof outline that associates AcpVBcp
with each control predicate cp.

POA(S), POB(S)
POA(S) & POB(S) (6)

Figure 5: Command-Independent Rules of Ordinary Proof Outline Logic

Assignment Axiom: For a primitive assertion P: {P,} x := e {P} (8)

Sequential composition of commands is like Hoare's rule without deletion of the intermediate
assertion:

Command Composition Rule:
{P} S, {Q {Q 2 {IQ} S2

{P1S,{Q}S2{I?}1

In order to reason about an if command, we must reason about its guard evaluation action as
well as the commands it guards. The following axiom allows us to derive proof outlines for guard
evaluation actions.

8



GEvalif(S) Axiom: For an if command
S: if BI-SuiD B,-S, fi

and a primitive assertion P.

{P} GEvalif(S) {IPA(A, at(S,) B,} i

A proof outfine for an ifis then constructed by combining a proof outline for its guard ovaluation

action with a proof outline for each alternative.

if rule:
(a) {P} GEvalif(S) {R)
(b) (R Aat(Si)) : Pi, ... (R Aat(S,)) => P,ý

(c) {PI} PO(SO) {Q}, ... 1 {P,"} PO(S,) {Q}
{ P)
S: ifB,--{Pi}PO(S1 ){Q} ()i)

B,•--{,PO( 0S,){Q}
fi

{Q}
The guard evaluation action for do selects a command Si for which corresponding guard B,

holds. If no guard is true, then the control point following the do becomes active.

GEvaldo(S) Axiom: For a do command
S : do B1ISl"'" B,--S, od

and a primitive assertion P,

{P} GEvald,(S) {P A (Ai at(Si) = Bi) A (after(S) =:, (-B 1 A ... A -,B,))} (12)

The inference rule for do is based on a loop invariant, an assertion I that holds before and after

every iteration of a loop and, therefore, is guaranteed to hold when do terminates-no matter how

many iterations occur.

do rule:
(a) {I} GEvaldo(S) {R)

(b) (RA at(Si)) = P1 , ... , (R A at(S,,)) P,"
(c) {P 1} PO(SO) {I}, .... {P,} PO(S,") {I}
(d) (R A after(S)) =: (I A -',B, A ... "-B,B;

S: doBi--Pu}PO(Sj){1}

SB,, - { P,,) PO( S ) I[}
od

{IA-B^-..A-B•}



The Inference rule for a cobegin combines proof ,utlines for its compolinet prncs,'
interference-freedom test [121 ensures that execution of an aloni ic act ion in one proces ,'.• i)o!
invalidate the proof outline invariant for another. This interference-freedom test is forutiated it
terms of triples,

XI(o A): {pre(a) A A} 4 {A}

that are valid if and only if t does not invalidate assertion A. If no assertioni in P)01 S, is invajided
by an atomic action a then. by definition. Ipo(s' adso cannot be in alidated by t. Threfrore. \.,, cai:

prove that a collect'on of proof outlines PO(S) . PO(S, ) are intcrfcrnctue fraf by estahijsIIa:a

Interference Freedom 11

For all ij, 1 < i < n, 1 < j < n, i j:
For all atonfic actions a in S,

For all assertions A in PO(S1 )
Nl(a, A) is valid.

The following inference rule characterizes when a valid proof outline for a cobegin will result
from combining valid proof outlines for its component processes:

cobegin rule:
(a) PO(S) ... ,.PO(S,,)
(b) P =-> (A, pre(PO(S,)))

(c) (Aipost(PO(Si))) := Q (15)

(d) PO(S1 ), .. ., PO(S,) are interference free

{P} cobegin PO(S)//" .//PO(S,) coend {Q)

Since execution of an atomic action a in one process never interferes with a control predicate
cp in another, certain interference-freedom triples follow axiomatically.

Process Independence Axiom: For a control predicate cp in one process ýnd a:ij atomic
action a in another,

{cp = X} a {cp = X} (16)

Notice that NI(a, cp) follows directly from this axiom when a and ep are from different processes.

2.4 From Proof Outlines to Safety Properties

Theorems of Proof Outline Logic can be used in verifying safety properties because of t he way l hat
proof outline validity is defined. If a proof outline PO(S) is valid then 'oP(S) must he an invariant.
Suppose that lPo(s) is an invariant. Then according to the method of Section I for proving safety
properties, we can prove that executions of S starting with pre(PO(S)) true will satisfy the safety
property proscribing -,Q by proving (at(S) A pre(PO(S))) -- 1 po)s) and 'po(s) = -'Q. The proof
of (at(S) A prePO(S)) • 'po(5) follows trivially from th. ray 1PO(S) is defined. And. to proe(,
'po(S) • -'Q, we simply prove

(cp A Icp) = Q 17)

for every assertion A,, in PO(S), where A,:p is the asser :,tn that PO(S) associate" with con trot
predicate cp. For example, we prove as follows that for te, absolute value oprogram iin lingire 2

10



after(S) =. (x = lXi) holds during execution., started in a state satisfying x = X A at.S'): For t1!e
case where cp does not imply after(S), (17) is trivially valid. Tihe remaining cases are whtl -p
after(St), after(S2 ) and after(S). Here, we must show

after(S 1 )A post(S1 ) = (after(S) • (x = ix!))

after(S2 ) A post(S2 ) => (afthr(S) : (x = 1x]))

after(S) A post(S) =• (after(S) (x (x= lx))

All are valid.

3 Real-time Logic

3.1 A View of Real Time

In taking into account real-time, our universe of discourse comprises processes executing parts of
some program along with an external world. We thus are forced to consider three kinds of actions:

Ordinary actions: Atomic actions without timing constraints are called ordinary actions. They
may execute whenever they are enablc,, or wait arbitrarily long.

Real-time actions: A real-time action is an atomic action whose execution time is constrained.

Idles: Execution time may pass without the program doing anything. Such a passage of tirne can
be attributed to the external world, and we model this by an idle.

Ordinary actions are familiar, and the Proof Outline Logic of Section 2 works fine for them.
Real-time actions cause no logical difficulties, as they have the same effects on variables and program
state as ordinary actions, but their execution is more constrained. Adding axioms to Proof Outline
Logic suffices for reasoning about the execution time of real-time actions. Idles. strangely enough.
are more troublesome because their presence causes some matters of logical concern (viz., the time)
to change without program execution. For example, Rule of Consequence (2) is unsound when idles
are present.

In defining our logic, we consider an extremely powerful real-time language. allowing constructs
that may be impractical or impossible to implement. Programmers using actual languages will
not necessarily have access to all the features we allow. However, we believe that most actual
programs in our intended domain can be translated into our language. Thus, expressive power is
an advantage: the more powerful our 'anguage, the greater the number of real programs that can
be expressed in it.

Our programming language is the one of Section 2 with additional real-time actions. In particu-
lar, for each unconditional atomic action 4 a, we define corresponding real-time action (o)[,,.,] where
6 and c are real-valued, non-negative constants. Execution of (n)[6,1 causes the same. indivisillo
state transformation as a does, but constrains it to occur at some instant between ( and f + ý tirnm
units after the entry control point for (o)[6,1 becomes active.

We have elected to characterize the execution time for a real-time action in terms of two pararne-
ters (6 and c), foilowing [14], in order to gain flexibility in modelling various execution environmonlts.

'An atomic action is unconditional if it is executable whenever its entry control point becomes activeý. In the.
programming notation of Section 2, skip, assignment, and the guard evaluaticn action for do are unconditional. Tlw

guard evaluation for if is not unconditional.

11



Parameter c describes the fixed execution time of the action on a bare machine: 6 models execu-
tion delays attributable to multiprogramming and other resource contention. A system where each
process is assigned its own processor is modeled by choosing 0 for 6: a system where processors are
shared is modeled by choosing a value for b based on the length of time that a runnable process
might have to wait for a processor to become available.

As an illustration, suppose we know that assignment commands take one time-unit. and that
there is a single processor. If three assignment commands are started concurrently, they will be

executed in some order. The first one to run will be started immediately and take one time-unit:
the last one will be started two units after it was issued, and it also takes one time-unit. Thus we
could model this with real-time actions having an execution time of 1 and a possible delay of 2.

cobegin (xl := 1)[2, 1]//(x2 := 2)[2,lf//(x3 := 3)[2.] coend

We do not allow a in a real-time action (o)[6,,l to be a conditional atomic action, such as an
if guard evaluation action, because it is not clear what such a construct would mean. The delay

in a conditional atomic action is already dependent on something e!se - changes to the program
state. Lower bounds on conditional atomic actions (e.g., an if command that requires at least one
time-unit to evaluate its condition) can be implemented with a real-time skip command followed by
an ordinary if. Timeouts on conditional atomic actions can be implemented by parallel processes
and shared variables.

When writing a real time program, it is sometimes necessary to program a loop whose iterations
have fixed or bounded execution time. All of the atomic actions in such a loop must be real-time
actions. We therefore introduce the following syntax to specify that (GEva!do(S))[6, 1 be used as
the guard evaluation action in a do command:

do [6,j Bi-- Si B .. SB,-- od (8

3.2 Reasoning About Real-time Actions

To reason about timing properties, terms are added to the assertion language and additional in-
formation is included in the program state. This is because the method of Section 2 for reasoning
about safety properties can only be used to prove safety properties for which the negation of the
proscribed -,Q is implied by each of a proof outline's assertions. Timing properties. by definition.
concern the instants at which control predicates become active, so we define a term Tcp for each
control predicate cp:

SfI t t is the time that cp last became true
-oc cp has never been true

We also define a new real-valued term T to be equal to the current time.
Only certain assignments of values to these terms are sensible in a program state. In particular.

if two control points become active as part of the same event, then they must be assigned the same
time. For example, since S is the first subcommand of S T. we require that tat(S) = lat(S T).
Similarly, the subcommands S, and S2 in S: cobegin S//i$2 coend start at the same time. so
we require Tat(SI) = Tat(S 2 ) = Tat(S).

Notice what effect adding these terms to the state has on the definition of proof outline validity.
Recall that a proof outline PO(S) is valid if execution starting in any state that satisfies lpof.-)

leaves Ipo(s, invariant. Now, a state includes a time, and so we must consider starting slates with
arbitrary times as well as arbitrary values for program variables and control.
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Let C[S] be a program containing a copy of S. An initial state of C[S] not only must satisfy
at(C[S]), but must be one in which the value of T is some non-negative number, and the values
of tat(T) and lafter(T) (for every command T) are initialized properly. That is, for any control
predicate cp, if ai(C[SI) = cp is valid, then jep has the same value as T; otherwise it is - x. The
elements a of R'7' are those infinite sequences of states such that:

* a0 is a state reached by executing some program C[S] zero or more steps from an initial state.
updating T, Tat(T), and lafter(T) appropriately on each step.

* Each state aoi+ is the result of performing an ordinary action, a real-time action, or art idle
from oi. Execution of an ordinary or real-time action updates T, lat(T). and Tafrtr(T)
appropriately. Execution of an idle only updates T, and in a way that does not violate the
bounds 6 and , associated with any enabled real-time action. If no action of S is enabled.
then the only transition permitted is an idle that does not increase T.

Validity of proof outlines in our real-time logic is defined as before (Section 2.2). using Nrin
place of 7-R':

Real-Time Invariance:
H • Ipo(s) => Olpo(s) (20)

Real-Time Self-Consistency: )I7t # (at(S) A pre(S)) =. Ipo(s)

Axioms and Rules for Real Time

Execution of a real-time action (a)[b,] affects the program variables and control predicates in
the same ways as the ordinary action a from which it was derived. Therefore, we have the following
inference rule:

Real-time Action Transformation: For a an unconditional atomic action. P and Q
primitive assertions, and 0 < b and 0 < c:

{P}a{Q}(21)

Some additional axioms and inference rule allow us to reason about formulas of our more ex-
pressive assertion language. First, the various non-atomic commands of our programming language
give rise to axioms based on the way they equate their components' control points. These axioms
are similar to the control-predicate axioms. For our programming language, these axioms are given
in Figure 6.

Next, there are the additional axioms given in Figure 7 for the assertion language. In these. cp
can denote any control predicate, including those not associated wi' i entry or exit control points for
real-time actions; S is the label for a real-time action (a)[6(,. Axioms (22) and (23) follow directly
from the definition of Tcp. Axioms (24) and (25) capture the essence of a real-time action--that
its entry control point cannot stay active too long. This, ihi urn..dlows us to ir.fer that a control
point is not active by using the following corollary of (24):

(jat(S) + 6 + ( < T) --,(')(26)
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For S the sequential composition S1S2

Tat(S) = fat(Si)

Tafter(S) = Tafter(S2 )
Tafter(S1 ) = fat(S 2 )

For an if command:
S: if Bi--Si Bf--S, fi

Tat(S) = lat(GEvalif(S))
Iafter(S) = max(jafter(Si), .... Tafter(Sj)

Tafter(GEvalif(S)) = max(Tat(Sz),.... fat(S,,))
For a do command:

S: doBI-SOl ."" B,--S, od
Tat(GEvaldo(S)) = max(fat(S), Tafter(SI )..... fafter(S,))

lafter(GEvalda(S)) max(Tafter(S), tat(S),.... at(S)
-in(S) lafter(S) = Jafter(GEval(jQ,(S))

at(S) jat(S) = Tat(GEvaldo(S))
in(S2 ) I at(Si ) = raftcr(GEvald,((S))

after(S) I after(Si) = Tat(GEvaldo(S))
For a cobegin command:

S: c-'begin Si//" //S. , coend
Tat(S) = Tat(SO) = Tat(S 2 ) ='= Tat(S,,)

Tafter(S) = max(Tafter(Sl. _. TafIer(S,,))

Figure 6: Control Time Axioms

The way these new terms change value when atomic actions execute is captured by new axioms.
For any ordinary or real-time atomic action a and control predicate ep, we have:

cp Invariance {cp = C A Tcp = V) a {(cp = C) =, (Icp = V)} (27)

The antecedent in the postcondition is necessary for the case where cp could become true when 0
finishes, e.g., cp = after(a).

Next, for any ordinary action, we have:
Action Time Axioms:

{K _< Tat(S)} S: a {K < Tafter(S)} (28)

{K < T} S: a {K < I after(S)) (29)

Action Time Axiom (28) asserts that the exit control point for S becomes active after the entry
control point for S last became active. Action-time Axiom (29) makes the subtly different assertion

1
Tcp _ T (22)

(cp = -oo) => "cp (23)

at(S) • fat(S) < T • Tat(S) + 6 + (24)

Tat(S) 5 -0o 1 after(S) < Tat' )-) 4 6 + (25)

Figure 7: General Real-Tirm Axioms
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that the exit control point for S becomes active after every time that the entry control point for S
was active.

For a real-time action (a) 6[•,, the following axiom characterizes how execution changes the

Tcp-terms.

Real-time Action Axiom {K < Tat(S)} S K(a)16 ,1 {K + ( < Talter(S)) (30)

This axiom is analogous to Action-time Axiom (28), except that now the postcondition has been
strengthened to give a tighter lower-bound on when the exit control point for S first becomes active.

Two things that the Real-time Action Axiom (30) does not say are worthy of note. First. this
axiom does not bound the interval during which the entry control point for S is active; Axiom (24)
serves that role. Second, one might expect the following triple to be valid-its precondition being
similar to that of (29).

{K < T} S: (a)c[,] {K + c < T} (invalid) (31)

Unfortunately, (31) is not sound. Execution of S started in a state such that jat(O) < K <_ T would
satisfy the precondition but might terminate before K + c. For example, consider an execution of
(a)[ 0 ,2] that is started at time 0. Thus, at time T = 1 the state satisfies K < T if we choose K = 1.

and so precondition K < T is satisfied by that state. When execution of (a) [0.21 terminates-2
units after it is started-at time T = 2, the postcondition K + c < T is 1 + 2 < 2, which is false.

Finally, the following rule allows rigid variables to be instantiated with expressions involving

Tcp-terms. (Rigid Variable Rule (4) only allows rigid variables to be instantiated by constants.
rigid variables, or expressions constructed from these.)

TcP-Instantiation {Tcp = V} a {cp = V}, {P} a {Q} (32)
M 1a O{QCP1

This rule is typically used along with cp Invariance (27). For the case where real-time action
a and control predicate cp are in different processes, the first hypothesis of Tcp-Instantiation is
automatically satisfied due to Process Independence Axioms (16). Thus, we obtain a derived rule
of inference:

a and cp are in different processes,

Derived tcp-Instantiation {P} a {Q} (33)

3.3 Rule of Consequence Revisited

Most of the axioms and proof rules of Proof Outline Logic are sound in our real-time setting.
However, the Rule of Consequence (2) is unsound and needs revision. We also need to revise
the notion of interference freedom. While the Owicki-Gries cobegin rule [12] is sound, when the
assertion language concerns real time, the rule is is no longer complete and, in particular. not
powerful enough for even simple examples of concurrent real-time programs.

Rule of Consequence (2) is invalid in any setting where some aspect of the state is not under
program control. Recall, the rule is:
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Maxldle(a) = 00 a ordinary

Maxldle((a)[6 ,1 ) = b + (

Maxldle(SIS 2 ) = Maxldle(SI)
Maxldle(if. --fi) = 00

Maxldle(do .. .od) = 00
MaxIdle(do[6,j ... od) = 6 + f
Maxldle(cobeginS 1 // .. //S,coend) = min {Maxldle(Si)Ii 1 . n}

Figure 8: Definition of MaxIdle(S), the maximum idle of S

P', >P, {P} PO(S) {}, Q = Q'
{P'} PO(S) WQ'}

The difficulty is illustrated by the following example. Consider the following proof outline, which
is valid in our model:

{T > 4} S: skip {true} (3-4)

Furthermore, note that
(T = 4) = (T > 4) (35)

is valid. However, if we apply the Rule of Consequence to (34) and (35), we obtain the following

proof outline:
{T = 4) S: skip {true) (36)

It is invalid because an idle by the environment invalidates its precondition, T = 4. In particular.
let y be a state in which at(S) A T = 4 is true. Therefore, the precondition of (36) is satisfied by
-, and so is Ipo(s). An idle can lead to a state y' in which at(S) A T = 4.01, invalidating Ipo(S).
Thus the proof outline does not satisfy Real-Time Invariance (20), and hence is not valid.

We eliminate problems of this sort by modifying Rule of Consequence (2) so that idles cannot
invalidate a strengthened precondition P'. In light of (36), an obvious approach is to rule out any
strengthening of preconditions achieved by placing an upper bound on T. However, that restriction
would prevent us from deriving the valid triple

{Tat(S) = 4 A 4 < T < 6} S: skip[0 ,2 ] {true}. (37)

We therefore characterize the interval over which a strewgthened precondition P' must not be

invalidated by an idle. For any program S, define MaxIdlet (maximum idle time for S) to be the
longest real time interval that can elapse after at(S) becornem true but before some pirogram action
of S must be executed. If S may idle arbitrarily long, ther. :5:axIdle(S) = 00. Figure 8 gives a way
to calculate MaxIdle(S) by induction on the structure of S.

For example,
Maxldle(skip) = c

as skip can wait arbitrarily long before taking a step, and

Maxldle(cobegin skip//(skip)[0., coend) = 2
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as that program will necessarily take a step at or before time 2. In order for Rule of Consequence
(2) to be sound, not only must P'•P hold but P' must remain true until time Iat(S)-±Maxldle(.5.

We say that an assertion P is patient for S if

(P A at(S)) : (Vd.(T < d < Iat(S) + Maxldle(S)) P1) (3S)

Thus, if P' is patient for S, then P' can be a precondition for S and no idle by S can invalidate
P'. For example, 4 < T < 6 is patient for (skip)[0 ,21 , but 4 < T < 5 is not. A corollary of the way
iHT is constructed is that the precondition of any valid proof outline PO(S) is patient for S.

Note that under some circumstances P' is easily demonstrated to be patient for 5-:

"* If P' does not mention T.

"* If P' only gives lower bounds on T.

However, even assertions involving upper bounds on T can be patient. For example.

Tat(S) = 4 A 4 <T < 6

is patient for S : skip[0,2 ].
A sound Rule of Consequence for our real-time logic can be formulated in terms of patient

assertions:

Rule of Consequence:

PI =- P, P' is patient for S, {P} PO(S) {Q}, Q Q' (39)
{P'} PO(S) {Q'}

So, because T = 4 is not patient for skip, it is not possible to deduce (36) from (34) and (35)
using this new Rule of Consequence. On the other hand, because

(Tat(S)=4 A 4<T<6)=4T>4 (40)

is valid and Tat(S) = 4 A 4 < T < 6 is patient for skip[0,2j, we can use the Rule of Consequence
(39) to infer

{Tat(S) = 4 A 4 < T < 6} skip[0 ,21 {true} (41)

Note that we do not need to place similar restrictions on Q'. The interpretation of { P} PO(S) {Q I
is that, when S finishes, Q remains true indefinitely. If Q =: Q' in predicate logic, and Q remains
true forever, then Q' will also remain true forever.

The following derived rule, the Simple Rule of Consequence, handles most of the bookkeeping
uses of the Rule of Consequence (39):

P' =P, {P} P0(S) {Q}, Q • Q' (2
Simple Rule of Consequence = P P0(S) IQ)Q2)
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3.4 Interference Freedom Revisited

When execution times of atomic actions are bounded, certain forms of interference cannot occur.
This is illustrated by the following proof outline.

{x =0}
cobegin

{I=0} a: (x :=X + 1)[0,2] { =1
//

{x=O} j3: (y:=X+l4Eo,1] {y= 1}
coend
{x = IAy= 1}

It is valid, but cannot be derived using the cobegin Rule because PO(a) and PO(,3) are not
interference free. In particular, NI(a, pre(B)) is not valid.

NI(a, pre(1))

= {pre(a) A pre(/)} (x := x + 1)[0,2] {pre(13)}

= x= 0} (X := X + 1)[0,2 X = 0}

Using operational reasoning, however, it is not difficult to see that executing a cannot invalidate
pre(B), so PO(a) and PO(3) should be considered interference free. This is because according to
Figure 6, both at(a) and at(3) become active at the same instant, say time 0. By definition, a
completes at time 2, and so x remains 0 until this time. Real-time action 3 completes at time 1
and, therefore, must find x to be 0. Thus, it is simply not possible 'r a to change the value of x
while at(i3) is active.

The ordinary cobegin Rule (15) is based on a form of interference freedom that does not take
into account execution-time bounds of real-time actions. In particular, NI(a, Ace) does not account
for the fact that although AUP might be associated with an active control point cp when a is started
then we may be able to prove that cp cannot be active when a completes. The remedy is to refine
NI(a, Acp) taking into account the time bounds for how long an entry control point for a real-time
action can remain active. The following triple accomplishes this.'

Nlt(a, Acp) : {at(a) A pre(a) A cp A Acv} a {cp =' Acp}

Returning to the example above, we now have:

NIrt(a, pre(i))

= {at(a) A pre(a) A at(3) A pre(/)} x r:= + 1)[021 {at(,3) = pre(f)}

= {at(a) Aat(f3)Ax=0} (x:=x+1)[0,2] {at(f)7*x=O}

And, this obligation can be discharged as follows. We present the proof in detail. to show how
the axioms and rules fit together. Steps that involve standard logic (including arithmetic) are listed
as simply "predicate logic."

5This triple is not specific to real time; see (111 for example. It an*- s naturally when one attempt, to construct a
proof rule for cobegin. In many cases, it can be simplified to the Owsirki-Gries condition. but here it cannot.
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1. Real-time Action Axiom (30)
{K < Tat(a)} a : (x:= x + 1)[,2l (K + 2 <I after(a))

2. Derived lcp-Instantiation (33) with 1, substituting ]at(O) for K

{Iat(3) < tat(a)} a : (X := z + 1)[o,2] (at(Z) + 2 < laftcr(o)}

3. Axiom (22) with tafter(a) for Tcp, and predicate logic

(Tat(,3) + 2 < Tafter(a)) => (Tat(j3) + 2 < T)

4. Simple Rule of Consequence, (42) with 2 and 3

{Tat(/) < Tat(a)} a : (X := X + 1)[0,2] {Tat()) + 2 < T}

5. Axiom (24) and predicate logic
at(13) =; Tat(O) < T < lat(O) + 1

6. Predicate logic and arithmetic:
(at(i3) :' Tat(W ) < T <T Tat(#) + 1) =- ((Iat(3) + 2 < T) * -,at(/3))

7. Modus Ponens from 5 and 6

(Tat(3) + 2 < T) =: -,at(,)

8. Simple Rule of Consequence with 4 and 7

{Tat(0) <_ Tat(a)} a: (x := X + 1)(0,2] {-at(3)}

9. A Control Time Axiom from Figure 6
Iat(a) = Iat(/3)

10. Predicate logic from 9

Tat(/) < Tat(a)

11. Predicate logic from 10, since anything implies true
pre( NIt( a, pre(O)))=t, Ifat(B) <5 1at(a)

12. Predicate logic
"-at(O) =:, post( N/•t(a, vre(O)))

13. Rule of Consequence with 8, 11, and 12; patience is vacuous

NIt(a, pre(O))
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Notice that information about the time after a is accumulated in steps 4 and 5. and used i1n
step 6 to reach the same conclusion that operational reasoning gave: that, Once a finishes. 3 has
also finished.

4 Example: A Mutual Exclusion Protocol

cobegin
b :if X = 0 - c: (x := 1)(6(c).(0) fi
d :(skip) (5(d),, d))

e :ifx= 1x-* f: Critical Section fi
//
Y if x = 0 -- c': (z := 2)[6(c,),,(c,)] fi
d' : (skip)[•5(d%,,dd,)]

el if x = 2 - f': Critical Section fi
coend

Figure 9: Core of Fischer's Mutex Protocol

Knowledge of execution times can be exploited to synchronize processes. A mutual exclusion
protocol attributed in [10] to Mike Fischer [4] illustrates this point. The core of this protocol
appears in Figure 9. There, c, d, c' and d' are real-time actions. Provided the parameters defining
these real-time actions satisfy

6(c') + c(c') < c(d) (43)

and
6(c) + E(c) < c(d') (44)

this protocol implements mutual exclusion of the marked critical sections, as we now show.
Mutual exclusion of at(f) and at(f) is a safety property. It can be proved by constructing a

valid proof outline in which pre(f) =: --,at(f) and pre(f') =* -,at(f). A standard approach for this
is to construct a valid proof outline in which -'(pre(f) A pre(f')) is valid. It is thus impossible for
at(f) A at(f) to hold, because that would imply pre(f) A pre(f').

A proof outline for the first process is given in Figure 10; the proof outline for the other process is
symmetric, with "1" everywhere replaced by "2" and the primed labels interchanged with unprimed
ones. Notice that pre(f)=:x = 1 and pre(f')=;.x = 2. Thus, the proof outlines satisfy the conditions
just outlined for ensuring that states sv.tisfying at(f) A at(f') cannot occur.

It is not difficult to derive the proof outline of Figure 10 using the axiomatization of real-
time actions given above. The proofs of {pre(c)} c {post(c)} and {pre(d)} d {post(d)) are thp
most enlightening, as they expose the role of assumptions (43) and (44) in the correctness of the

protocol. Here is the proof of {pre(c)} c {post(c)}:
Let

M = b(c') + c(c') - c(d)

1. Axiom (29)
{fK < T} c: (X 1:=•(c),(c)l {K < Tafter(c))
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{true)
b: ifx = -0 {Tat(c') < T}

C: (x := 1[() ()]
{x $ 0 A (at(c') : Tat(c') + M < Tat(d))

fi

{z # 0 A (at(c') T lat(W) + M < T at(d))I
d. (skip) [5(d),e(d)]

Ix $ 0 A -,at(c')}

e: if = 1 -Ix { = 1 A -at(c')}
f: Critical Section 1
{true}

fi

{true}

Figure 10: Proof Outline for Fischer's Algorithm

2. Derived Tcp-lnstantiation, (33), on step 1, to substitute Tat(c') for K
{Tat(c') ! T} c: (z := 1)[s(c),,(c)] {Tat(c') <_ Tafter(c)}

3. Control Time Axiom (Figure 6) for if and sequencing
Tafter(c) = Tat(d)

4. Predicate logic on step 3, and M < 0 by (43)
(Tat(c') < Tafter(c)) t (Tat(c') + M < jat(d))

5. Predicate logic on step 4
Tat(c') < Tafter(c) =€ (at(c') = (Tat(c') + M < Tat(d)))

6. Simple Rule of Consequence (39) on steps 2 and 5
{Tat(c') < T7} C: (X := 1)[6(c),,(c)J {at(c') =ý, (Tat(c') + M < Tat(d))}

7. Assignment Axiom (8)
{1 = 1} c: (X :- 1 YV(c),c(c)] { - 1}

8. Predicate logic
true (1= 1)

9. Predicate logic
x=1 -x 0
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10. Rule of Consequence, (39) on steps 7, 8, and 9, since true is patient for c.

{true} c: (x : )[(cc)] {x X 0)

11. Conjunction Rule (5) on steps 10 and 6, plus 3 trivial use of the Rule of Equivalence (3).
{fat(c') _ T)} c: (x := 1)[6(c),e(c)] {x $4 0 A (at(c') =ý Iat(c') + M < jat(d))}

And, here is the proof of {pre(d)} d {post(d)}.

1. Real-time Action Axiom (30)
{K < Tat(d)} d: (skip) [(d),c(d)] {K + f(d) • 1 after(d)}

2. skip Axiom (7)
{L < K} d: (skip)[6(d),e(d)] {L < K}

3. Conjunction rule (5) on steps 1 and 2
{L < K A K < tat(d)} d: (skip [6(d),,(d)] {L < K A K + (d) _< after(d)1

4. Predicate logic
(L < K A (K + c(d) < Tafter(d))) =# (L + c(d) < fafter(d))

5. Rule of Consequence (39) on 3 and 4, noting that the precondition does not mention time and is

thus patient.
{L < K < Tat(d)} d: (skip)[6(d),(d)] {L + c(d) < Tafter(d)}

6. cp Invariance axiom, (27)
{at(d) = C A Tat(d) = V) d: (skip)[6 (d),(d)] {(at(d) => C) =ý (Tat(d) = V)}

7. Rigid Variable Rule (4) on 6, replacing C by true
{at(d) = true A Tc'(d) = V} d: (skip)[5(d),(d)] {(at(d) =ý. true) => (0at(d) = V)}

8. Rule of Equivalence (3) on 7
{Tat(d) = V} d: (skip) [(d),(d)) {Iat(d) = V}

9. Tcp-lnstantiation (32) using 8 and 5 to substitute Tat(d) for K.
{L < tat(d) < lat(d)} d: (skip)[6 (d).(d)] {L + ((d) < Tafter(d)}

10. Rule of Equivalence (3) on 9
{L < Tat(d)} d: (skip)[6 (d),(d)] {L + 4d) < Tafter(d)}

22



11. Derived $cp-Instantiation (33), and Rigid Variable Rule (4), to substitute I at(c') -+- NM for L in 10

{Tat(c') + M < Tat(d)} d: (skip)[5(d).,(d)} { tat(c') + M + ((d) < Tafitrid))

12. Process Independence Axiom (16), Rigid Variable Rule (4), and Rule of Equivalence (3)
{-•at(c')} d: (skip) [6(d),,,(a)] {-•at(c')1

13. Disjunction rule (6) on steps 11 and 12
{-'at(c') V (lat(c') + M < fat(d)) } d: (skip)[ (d)((d)] {--,at(c') V (Tal(c') + .M ( (d) < r

14. Rule of Equivalence (3) on 13
{at(c') = (Tat(c') + M < Tat(d))} d: (skip)[6(d),,(d)] {-at(c') V (1at(') + NI+ ±(d) a. if, r'

15. Axiom (22)
Tafter(d) < T

16.
-,at(c') V Tat(c') + E(c') + 6(c') < Tafler(d)
=• Predicate Logic from step 15
-iat(c') V (Tat(c') + c(c') + 6(c') < "T)
= Equation (26)
-,at(c') V -,at(c)
= Predicate Logic
"-at(c')

17. Simple Rule of Consequence (42) on steps 14 and 16
{at(c') ='. (Tat(c') + M < Tat(d))} d: (skip)[6(d)(,(d)] {-lat(c')}

18. skip Axiom (7)
{x # O} d: (skip) [6(d),f(d)] {x $ O}

19. Conjunction Rule (5) on steps 18 and 17

f$ 5 0 A (at(c') =: (Tat(c') + M < tat(d))) d: (skiP)f6(d),,(d)] {x $0 A -iat (c')}

Notice how timing irformation is used in step 16 to infer that a particular control point cannot
be active.

5 Related Work

It is instructive to compare our logic with that of [17], another Iloare-style logic [7] for reasoning
about execution of real-time programs. In [17], the passage of time is modeled by augmenting vach
atomic action with an assignment to an interval-valued variable RT, so that RT contains lower and

23



upper bounds for tile program's elapsed execution time. The equivalent of our (Command 'on.po()i-
tion Rule (9) and tile Assignment Axiom (8) would then be used to derive rules for reason.Wipa ahout
these augmented atomic actions.6 In contrast, ocr logic is obtained by augmienting the assrtor
language (of an underlying logic of proof outlines) with additional terms (frp and T, and dtvinizU
new axiomns for reasoning about these terms. We cannot derive rules for real-time act iot sitp>
by using the original logic, because we do not employ assignment commands to model the assau
of time.

Although our logic is more complex, by augmenting the axioms rather than the atomnic action>.
we are led to a more powerful logic. First, having tile Tcp-terms allowt, tLe logic to be more expres-
sive. These terms permit the definition of properties involving historical information -.informatiou
that is not part of the current state of the program. Timing properties that constrain the eap.ed
time between events can only be formulated in terms of such historical information. The louic of
[171 has no way to express historical information and. consequently. can be employed to reason
about only certain timing properties.

Second. our axiomatization allows reasoning about programs whose timing behavior is data-
dependent. The logic of [17] does not permit such reasoning. For example. because of the way
command composition is handled in [17], thc logic produces overly-conservative intervals for ti.1,,
bounds. This is illustrated by the following sequential piogram. which takes at least 10 time units
to execute.

if B - skip[o0 91 ý -B - skip[o.I0 fi
if"-B - skip1 ,g] I B - skip1 o0 llfi

This fact can be proved in our logic; the logic of [17] can prove on!- '!,L, ,N_,:cution requires at
least 18 time units.

A Hoare-style programming logic for reasoning abo,,it real-time is also discussed in [Sl. Thai
work is incomparable to ours. First, the programmi. - language axiomatized in [.8] is different.
having synchronous message-passing and no shared variables. T'his is syiptoimatic of a fundamental
difference in the two approaches. The emphasis in [8] is on the design of compositional proof
sy- ems. Shared variables could not be handled compositionally and so they are excluded from
programs. In contrast, we do not require that our proof system be compositional, and we do
handle shared variables)' Moreover, it would not be difficult to extend our logic for reasoning (non-
compositionally) about programs that employ synchronous message-passing or any of the other
communication/synchronization mechanisms for which Hoare-style axioms have been proposed.

The set of properties ha-adled in [8] is also incomparable to what can be proved using our
logic. Our timing properties make visible the times at which control points become active (through
lcp-terms). A compositional proof system cannot include information about control points in its
formulas, because they betray the internal structure of a component. The logic of [8], therefore. may"
only be concerned with times at which extcrnally visible events occur: the time of communications
events and the time that program execution starts and terminates. This turns out to allow proofs
of certain tiveness properties as well as certain safety properties. Our logic cannot be used to prove
any liveness properties other than those implied by the progress of time.

6The idea of augmenting actions with assignment commands in order to reason albout the passage of lime is also

discussed in [5), where it is used to extend Dijkstra's wp [3] for reasoning about elapsed execution time A more
recent effort to augment a wp cal, ulus for real time is reported in (161.

'The cobegin Rule of Proof Outline Logic (15) is not compositional because its intcrference-freedom test depends
on the internal structurc of the processes being composed.
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6 Concerns

A concern when designing a logic is expressive completeness. Ou, timing properties iiclude inaIIv.
but not all, safety properties of interest for reasoning about the behavior of real-1i me proI.raMI.i.

This is bccause the historical information in a timing property is limited to times that control poiito>
become active. One might also be concerned with the elapsed time since the program variables l:Iat

satisfied a given predicate or with satisfying constraints about how the program variables chanig,
over time. These are safety properties, but neither is a timing property (accordinig to our d(efinition ).

In general, safety properties can be partitioned into invarianct properties and history propt rtiu,ý
,15]. The invariant used in proving an invariance property need only refer t-) the current state: the

invariant used in proving a history property may need to refer to the sequence of states up to the
current state. Timing properties are a type of history property.

A version of Proof Outline Logic does exist for reasoning about history properties ý151. It
extends ordinary Proof Outline Logic by augmenting the assertion language with a -past state"&
operator and a function-definition facility. In this logic, our lep-terms can oe constructed explicitly:
they need not be primitive. And, the more general class of safety properties involving times--be it
times that predicates hold or times that control predicates hold-can be handled.

A Outline of the Soundness Proof

A.1 Scheme of the Proof

Our soundness proof has a straightforward structure. First we build a model. using structural
operational semantics (SOS) [13, 18, 6]. We then show how to interpret expressions and formulae
of the logic in this model. Using the model, we define the set of execution sequences *-/ used to
define validity in Section 3.2. We prove a series of "sanity lemmas," showing that the intuitive
definitions presented earlier match the formal definitions. Finally, we check each of the axioms and

proof rules against the model.
The most subtle part of the construction is in building the model. Checking the axioms and

proof rules is long but straightforward. In our model, we give a structural operational semantics
for our programming language. States y include all of the information necessary to interpret Proof
Outline Logic assertions. And, the operational semantics define the relation -f -- 1,1, stating that a
program in state -/ can perform a single atomic action, or can idle, and enter state -'.

Using '-*, we construct a linear-time temporal-logic model of a program S; that is. a set of
infinite sequences F of states. We define a notion of "-y is a suitable initial state for S'*. We get an
arbitrary consistent state -o by running an arbitrary suitable initial state -) for S arbitrarily long.

- ' -"* 70. it is then the set of executions of S started in arbitrary consistent states jo.
Having defined 1HS , we have have enough information to use the definition of Section 3.2 that

SPO((,) when RJr k 1po(s) => O1po(s). This puts us in a position to check the soundness of the
logic, which is tedious but not difficult.

A.2 Defining the transition relation

Defining relation '-* is nontrivial. The values of control predicates. especially at the beginning
and end of concurrent segments, change in fairly complicated ways. Consider the program of
Figure 11. When the cobegin labelled a finishes, after(c) or after(d) will hold as well as afftfr(g)
and after(h); and at(j), at(l), and at(m). A single atomic action -- say, g finishing --- may cause,

other actions at faraway points in the program to start. Or it may not.
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a: cobegin
b: if

BI -c c: skip

B2 - d: skip
fi

//
e: skip
f: cobegin

g: skip
//
h: skip

coend
coend

i: cobegin
j: skip
//
k: cobegin

1: skip
//
m: skip

coend
coend

Figure 11: Control flow example

Any description of the state transition function will, at some level, involve an inductive analysis
of the structure of the original program. We thus chose to define the operational semantics of
processes directly, using SOS. In this style, the behavior of a ccmposite program is defined in terms
of the behavior of its subterms. Since the state - must contain enough information to interpret all
assertions in Proof Outline Logic, it must include:

* at(1) and after(l) for each label I

* values of program variables

* values of rigid variables

9 Tat(I) and Tafter(l) for each label I

.T

All save the first can be encoded directly as components of a tuple. For example, if Y is a state.
then -/.Tat(-) is a function from program labels to times, and -y.a(-) is a function from program
variables to values. Following the usual SOS methodology, program counters in a state - are
represented by the partiai program y.S that remains to be executed. We assume that programs are
completely labelled; that is, each command (simple and composAe) has a unique label, as in the
example above. We also introduce a new command, done, indicating that a thread of computation
has finished.
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We now define the relation -y '. j" by induction on 7.S. By in large, if -y -- ', then 2 and ;'

are almost the same; e.g., most variables won't change values. We therefore present the SOS rules
by explaining the differences between -7 and t'.' For example, if -y.S is the program I : skip. then
the operational rule which applies to y is:

If
.S= I: skip
'.S= 1: done

'Y'.T > 7-.T
It' is otherwise the same as -y

Then -y - 7y

The behavior of a composite process is determined inductively by the behavior of its subpro-
cesses. For example, cobegin Sil .• 1//S1, coend can act if one of the S,'s can act without exceeding
the time bounds of the other Sj's. This happens if there is a state 7yo in which the program is simply
the Si that performs the the transition. Thus, the rule for cobegin is roughly:

If
- c.S =obegin Sil/ ..". //Si// ... //S coend,
7.S'= cobegin $1// . //S'//... §/S, coend.
where 37-o,7-y such that:

7 0 .S = Si

-to is otherwise the same as -

70- 70
No other component of -y.S is required to act before )'.T
S= Y.s

7' is otherwise the same as 0
Then 7 - 7'

Of course, the English antecedents are made formal.
Idle actions are described by:

If
7'.T > 7.T

7 .S is not required to act before 7'.T
7' is otherwise the same as 7

Then 7 -* 7'

One important consequence of using a structural operational semantics is that -Y I- "•' iff there

is a proof of 7 -" 7' from the operational rules. These proofs can be regarded as formal objects.
and, in particular, we can do induction on the proof that -y -- ''. Many of the basic lemmas used
for soundness proceed by such inductions.

This discussion omix,• subtleties that are essential to the proof. For the model construction. the
actual proof rules assign responsibility for the transition, so that when we define YTi we can ensure
that S takes all the transitions in Rsr. Roughly, a subterm S' of the progranm -.S is responsibh7 for
the transition 7 - 7' if S' aprears as -yo.5 in the proof of -y ' or if the transition is idle. ' lhe
determination of which processes are finished requires some care. For example. done is a finished
atomic process, but there are also others, such as cobegin done//done coend. While the intuition
is reasonably straightforward, the details are delicate.

81n the full proof, we use a more standard SOS notation, which makes the structural induction clearer hut requires
extra notation.
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A.3 Interpreting Expressions and Formulae

The meanings of most expressions and formulae can be read directly from the state F. For example.
the value of the expression x + y in state -y is the sum of y.a(x) and -. a((y). However, the valutes of
control predicates at(1) and after(l) depend on the control state 7.S of the program. In this section.
we sketch the interpretations of these predicates for the case when I is the label of an atomic action0.

Let y be a state in an element of 7-HT. Interpreting after(l) where 1 is the label of an atomic
action is straightforward: y.S includes a subterm of the form I : done if and only if the atomic
action labelled I in -y.S is finished.

We define the set of active atomic actions of a program S inductively; e.g., if S is atomic.
act(S) = {S}, and e.g.

act(cobeginS,// ... §//Scoend) = Uiact(Si)
if S1 is not finished, act(SiS 2 ) = act(S 1 )
if S1 is finished, act(SIS2) = act(S 2 )

Then - • at(l) if I is the label of an atomic action in act(3`.S). In the actual proof, we allow at(t1
when I is the label of any program, not just the label of an atomic action. This complicates the
definition of act somewhat and requires use of an extra set of markers in the operational semantics.
However, it allows us to verify the Proof Outline Logic control predicate axioms without having
built them directly into the definition of -y k at(l).

A.4 Sanity Checking

We demonstrate that the operational semantics and notion of interpreting processes are reasonable
by proving a series of sanity lemmas. These are lemmas that are not necessarily used in the
soundness proof proper but show that the formal definitions derived from the operational semantics
agree with the less formal ones used in the body of this paper. The following sanity lemma, for
example, shows that the intuitive definition of tat(l) as the last time that at(l) became true agrees
with the formal definition of Tat(l) as it appears in the operational semantics:

Let -yo be a suitable initial state, and -Yo '-- 71 c-" "" ". Then. for any index i and

label t, -yi.Tat(l) is:

* -0if (VO <j < i : yj at(l))

* 7f.T if j is the largest 0 < j < i such that (3-1 y at(l) and y' • at(l)).

* -y0.T, if neither of the preceding conditions obtains; that is, if 7y0 • at(l) but
( j : -Ij K at(1) A -I.+I ý= at(1)).

That is, the time that the bookkeeping mechanism gives for Tat(l) is in fact the value of the clock
on the most recent instant that at(l) became true.

A.5 Soundness

Once the SOS rules have been constructed and their sanity checked, it is a routine matter to show
soundness of all the Real-Time Proof Outline Logic axioms and proof rules. We define the model
7-HT in the following way. We consider executions starting with S in an arbitrary state of control

and memory. We allow other processes in this initial state as well. We thus consider executions
that start with some program that includes S; we run this program for a time (which gives an
arbitrarv state, perhaps with S partially executed). However, in the sequences in HT, only .S is

allowed to take steps, so S must be responsible for each transition.
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* 7 is an initial state for S iff -y.S includes S as a subprogram, and .Iat (l) and -. 'afthr(!) are
initialized properly. That is, -Y.Tcp = -. T if -f.S k cp, and to -oc otherwise, for ep a control
predicate.

'Hs" is the set of all sequences (-7o,y,. . .) such that 7 - y o for some initial state and

"-/ -i+1 for every i, and S is responsible for each transition.

Note that IsT is suffix-closed; that is, if (yo, 1 f,...,i,^N+5...) E "H7, then also + .)
To prove the Control Predicate Axioms of Figure 1 sound, we characterize possible control

states of a program and possible executions of a program. For example, omitting labels, done S is
a possible subterm of a control state (as skip S can evolve into it); but S done is not possible (the
first in a sequence of commands is executed before the second).

Similarly, we say that program fragment S' is a descendant of S if (roughly) there are states
7 "'- I' such that 7.S = S and 7'.S = S'; it is a proper descendant if S S'. We characterize the

descendants of all terms. For example, let S be a command sequence I: ((m -S )(n : S2 )), and .5'
be a descendant of S. Then there is at most one subterm of S' labelled 1, and it must be:

9 1: ((m: S')(n : S2)) where S' is a descendant of S1, or

* l1: (n : S2) where S' is a proper descendant of S2.

Soundness of the Control Predicate Axioms follow easily from these characterizations. For
example, for one direction of the axiom for sequencing, after(m) = at(n), we calculate that if
- k after(m), then there must be a subterm m : done of 7.S. From the preceding characterization.
this means that n : S2 must also be a subterm of y.S; and, by the definition of at(.), this implies
that at(n) holds as well.

The other axioms and proof rules are proved similarly. For example, to show (22), we show by
induction on the proof of -f - -y' that

( Y '- - y ') # - ( .-Y - - "7 '.- ) (4 5 )

Suppose that -yo -- + -y1 ' .'" is a sequence of transitions from an initial state. By induction on ,
and the definition of initial state, we show that ,.ITat(l) and 73.iafter(l) are either -x, or ',j.T

for some j < i. This and (45) suffices to show (22).
Axioms and rules involving proof outlines require verifying statements of the form ST k [=: != 0t.

From temporal logic, we know that, if I =- QI is valid, so is I => 01. I is a predicate logic formula
rather than a temporal one, hence it is true or false in a single state. It thus suffices to show that.
for each 7 --yo --- -1q where -y is an initial state for S, if -to k 1, then -Y 1= L.

We use this method to verify each proof outline axiom and proof rule. All these verifications
proceed by induction on the proof of the transition 7yo 71. For example, to check skip Axiom (7).
let S = I : skip. 'po(s) = (at(l) * P) A (after(l) =€. P), where P is primitive. Suppose 'Yo ý= I'p(s).

It is easy to show that -y k P is independent of 7 ."S and 7 .T if P is primitive. The proof comprises
the following cases:

1. The transition is idle, and yo • at(l). As yo • Ipo(s), we conclude yo • P. In this case.
the only component of 'Vt that is different from yo is 7 1.T. Since the value of a primitive
formula does not depend on 7.T, and since 7yo H P, we conclude 7y k P. This suffices to
show 71 ý= [PO(S).

2. The transition is idle, and -Y • after(l). The proof proceeds as above.
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3. The transition is not idle, in which case it proceeds by SOS rule for skip above. That is.
7o.S = I : skip, 71.S = I : done, and 70 and -y1 are otherwise identical except possihly for
3`i.T. Note that -`0 • P, because -to J at(l) and -yo k 1pols). Primitive formulas do not
depend on the changed components. Hence `1 k P and, thus, -1 • lpo(s) as desired.

4. -'o • -,(at(l) A after(l)). In this case, S cannot be responsible for anv, non-idle transitions.
and all transitions are thus idle. In particular, -11 -'(at(1)A after(l)), and hence ,i p
vacuously.

Each of the other axioms and rules of Real-Time Proof Outline Logic is handled in a similar
manner, and thus we establish soundness. The subtle part of the proof is not checking these rules.
so those details are omitted here. The subtle part is the definition of the real-time execution model
that is explained above.
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